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Abstract

Video compression plays a central role in a vast number of multimedia applications
but its computational requirements are beyond the capabilities of any present single
processor system. In this paper, we explore the use of parallel machines like the
Intel Paragon to compress MPEG-2 video sequences. The motivation is to build
a production-based compression facility by exploiting the potential power of the
available machine. Given a video sequence or a set of sequences, the aim of the
parallel encoder is to achieve the maximum possible encoding rate. A collective
scheduling scheme for the processors, I/O nodes, and disks is proposed that provides
fast 1/0, minimizes the idle times of processors, and enables the system to work in a
highly balanced fashion. An efficient data layout scheme for storing video frames is
also proposed in order for the 1/O to sustain the desired data transfer rates. Using a
small percentage of processors as the /0 nodes results in an efficient utilization of
the system resources. As shown by experimental and analytical results, the encoding
scheme is scalable and higher performance can be achieved with larger machines.
The performance of the proposed scheme can be many times the real-time encoding
rates with SIF (Standard Interface Format) and CCIR-601 video sequences. The
experimental results indicate about two-fold gain in performance compared to the
previous studies. Such a facility is useful for the conversion of analog videos to
compressed digital form in large studios, digital libraries, and other multimedia
database environments. The proposed scheme partitions the system into groups of
compute nodes, and I/O nodes, and can be easily extended to other MIMD machines
or a set of networked workstations.
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1 Introduction

The realm of high-performance parallel and distributed computing is expand-
ing beyond the traditional scientific community because the current revolution
of information technology has created a vast number of commercial applica-
tions that require massive computing power [5]. The need for high-performance
computing in commercial applications is being recognized by researchers from
the areas of both parallel processing and information technology. Large-scale
databases, video servers, visualization tools, content-based search and re-
trieval, graphics rendering, etc., are typical applications that require large
computing power.

Video encoding (also called compression) is another application which requires
enormous computing power and thus can benefit from high-performance com-
puting. Digitized video, which is a fundamental component of common mul-
timedia applications, typically needs massive amount of data required to rep-
resent the audio-visual? information. A few minutes of video sequence re-
quires Gbytes of data storage. Similarly, the amount of data for transmitting
a video sequence over a network can easily overwhelm the network channels.
For example, to transmit an uncompressed high quality digital television sig-
nal (CCIR-601) would require 126 Mbps. Even for a lower resolution signal
suitable for video conferencing applications (Common Intermediate Format),
the uncompressed bit rate is 36.5 Mbps [8]. These amounts become out of
reach for HDTV (high-definition television) [9], which will be using digital
video at a much higher resolution of 1920 x 1152.

Storage and transmission of a huge amount of data inevitably calls for com-
pression and decompression of digital video. Fortunately, digital video con-
tains ample redundancies in both the spatial and temporal domains, enabling
encoding algorithms to achieve a high degree of compression with little degra-
dation in quality. The entire compression/decompression process requires a
codec consisting of an encoder and a decoder. The encoder compresses the
data at the transmission or storage end while the decoder decompresses the
data for reproducing the video to be viewed by the user. In order to guarantee
exchange of the compressed video data between different systems such that a
unique decompression is possible for a particular encoded bitstream regardless
of the decoder configuration, video coding algorithms are standardized. Two
recent international standards, known as MPEG-1 and MPEG-2, have been
developed by the MPEG (Moving Pictures Expert Group) of the ISO (In-
ternational Organization for Standards). These standards specify the syntax
(representation) for the decoding of video and accompanying audio data.

2 An audio data stream, having a smaller processing requirement as compared to
video, does not appear as challenging, and is not addressed in this work.



Compression is considerably more complex as compared to decompression
(which can possibly be done using a single processor machine). The objectives
of an efficient video compression techniques include (assuming a defined bit
rate) a good visual quality evaluated through subjective and objective assess-
ment criteria, high compression ratio, and low complexity of the compression
algorithm itself — the emphasis on any of these objectives can, of course, vary
according to the target applications. Compression can be aimed for real-time
or non-real-time encoding environments. In the former case, compression must
be achieved on-line, for example in a system in which a video stream is being
generated from a source such as a video camera; a real-time encoding rate
is about 30 frames/sec. In the latter case, compression can be done off-line
without strict requirements of real-time compression rate. Non-real-time com-
pression is required in applications like digital library or production systems
which require encoding a video sequence and storing it on a CD-ROM or DVD
(Digital Versatile Disk).

There are two approaches to performing video compression: hardware-based
[1], [23] and software-based [2], [3], [4], [7], [10], [11], [19], [20], [22], [24].
Both approaches have their own advantages and disadvantages. A hardware
approach uses a special-purpose architecture, and its advantages include the
ease of use and high compression speed. However, dedicated hardware is less
flexible and can become obsolete. Furthermore, hardware is often optimized for
a particular coding algorithm, and cannot be used for exploring other present
and future video compression standards. A software solution using general-
purpose computing platforms, on the other hand, is more flexible, and thus
allows algorithmic improvements. In addition, for non-real-time applications,
a software implementation can produce better quality video compression by
tuning various parameters and by allowing multiple passes for optimization.
However, the very high computation requirements of video applications can
often overwhelm a single-processor sequential computer [2], [21]. Therefore,
it is natural to exploit the potentially enormous computing power offered by
parallel computing systems.

In this paper, we explore the use of parallel machines like the Intel Paragon to
compress MPEG-2 video sequences. The motivation is to build a production-
based compression facility by exploiting the potential power of the available
machine. In addition, parallel machines which are normally available for sci-
entific computing can be exploited for new multimedia applications. The com-
pression facility is aimed to compress multiple and large video sequences. The
environment is not real-time but the aim is to achieve the maximum pos-
sible encoding rate beyond the real-time speed. Such a facility is useful for
the conversion of analog videos to compressed digital form in large studios,
digital libraries, and other multimedia database environments. We propose
schemes for data layout, efficient 1/0, and load-balanced data distribution.
These schemes provide fast data retrieval as well as efficient scheduling and



matching of 1/O and computation rates such that the entire machine oper-
ates in a highly balanced fashion without any bottlenecks. Using a very small
percentage of processors as the 1/O nodes results in an efficient utilization of
the system. More importantly, our scheme is scalable, that is, an increase in
the number of processors will result in a proportional increase in the encoding
rate. As a result, larger machines will yield higher encoding rates. Specifically,
given any MIMD machine configuration (that is, the number of processors,
I/O nodes, and disks), our proposed method will logically configure the ma-
chine for the best possible utilization and match the /O and encoding rates
to reach the ideal performance level.

The rest of this paper is organized as follows. Section 2 provides an overview
of MPEG-2, followed by Sections 3 which briefly discusses the related work
and gives a motivation for pursuing this research. Section 4 gives an overview
of the Intel Paragon and its logical partitioning used in our encoding scheme.
Section 5 includes a discussion of the proposed parallel encoder and various
related issues. Section 6 presents the experimental results. Section 7 discusses
the scalability of the encoder and the last section provides some concluding
remarks.

2 Overview of MPEG-2

Video coding standards provide a common format and enable the sharing of
technology among various industries. Some of the recent standards are JPEG
(to compress still images for both storage and transmission applications) [13],
H.261 [17] and H.263 (for video telephony and video conferencing applications
at a low bit rate), and MPEG-1 (for applications requiring up to 1.5 Mbps bit
rate) [6], [14]. The Moving Picture Experts Group of ISO has standardized the
second international standard (MPEG-2 [15]), which is targeted for a variety
of applications at a rate of 2 Mbps or above with a quality ranging from good

quality NTSC to HDTV.

MPEG-2 is designed to be a generic standard to support a wide variety of
applications and hence works in various modes, called levels and profiles, suit-
able for different environments. Both MPEG-1 and MPEG-2 employ three
basic techniques for compression. The first is the reduction of spatial redun-
dancies, which is done by transforming the spatial pixel values into the fre-
quency domain by using the discrete cosine transform (DCT). The second is
the reduction of temporal redundancies, which is carried out by using motion
compensated prediction, that is, instead of transmitting an entire frame, only
the changes in position of blocks of pixels with respect to the previous frame
(along with the difference between the actual frame and predicted frame) are
transmitted. The third technique for achieving additional compression is the



use of statistical properties to encode the data using fewer bits.

MPEG-2 defines the syntax of its video which is structured in six hierarchical
layers: Sequence layer, Group of Pictures (GOP) layer, Picture layer, Slice
layer, Macroblock (16 x 16 pixel area) layer, and Block (8 x 8 pixel area)
layer. To allow random access to the coded bitstream while achieving a very
high compression ratio at the same time, pictures are classified as Intra-coded
(1), Predictive coded (P), and Bidirectionally predictive coded (B) pictures. I-
pictures provide good random access with moderate compression and are used
as reference pictures for future prediction. P-pictures are coded more efficiently
from a previous I- or P-picture and are generally used as reference pictures
for further prediction. B-pictures provide the highest degree of compression
but require both past and future reference pictures for motion compensated
prediction. The algorithm first selects an appropriate spatial resolution for the
signal, and then performs motion estimation by block matching. Motion esti-
mation refers to finding the displacement, called motion vector, of a particular
macroblock of the current frame with respect to a previous or future reference
frame or combination of both. A search is based on mean absolute difference
(MAD) matching criteria, i.e., a match is found that yields the minimum
accumulated absolute values of the pel differences for all macroblocks.

Next, the algorithm performs motion-compensated prediction for the tempo-
ral redundancy reduction. The difference signal, i.e., the prediction error, is
further compressed using the block transform coding technique which employs
the two-dimensional 8 x 8 DCT. The resulting transform coefficients are quan-
tized in an irreversible process that discards the less important information.
To allow a smooth bit-rate control, an adaptive quantization is used at the
macroblock layer. The motion vectors are combined with the residual DCT
information, and transmitted using variable length codes.

MPEG-2 provides more advanced features but is compatible with MPEG-1,
that is, an MPEG-2 decoder can decode an MPEG-1 compressed bit-stream.
MPEG-2 supports interlaced video in addition to progressive video (which is
also supported by MPEG-1). Besides, MPEG-2 takes other measures to im-
prove the picture quality. Furthermore, MPEG-2 provides concealment motion
vectors for I-pictures in order to increase robustness from bit errors. MPEG-
2 introduces variable bit-rate along with usual constant bit-rate. Moreover,

MPEG-2 presents two color spaces, namely 4:2:2 and 4:4:4, in addition to
4:2:0 used by MPEG-1.



3 Related Work

The problem of software-based video encoding using parallel processing is
non-trivial, and cannot be solved by simply replicating multiple sequential
encoders on different processors, because the local memory of a single processor
is usually not large enough to hold more than a few frames and thus an efficient
I/O methodology is required to bring the data in and take the compressed data
out of processors. Since the video signal can be viewed as a 3-dimensional
(3-D) signal, that is, two dimensions in the spatial domain and one in the
temporal domain, various partitioning schemes are possible. The parallelism
can be exploited at macroblock, slice, frame and/or GOP (group of pictures)
level. Moreover, the best method of parallelization also depends on whether
the encoding is on-line or off-line.

In on-line encoding the data arrives from a live source, presumably at a rate of
30 frames/sec., which must be compressed on-line at that speed. To avoid any
delay, each incoming frame must be processed in real-time. A natural solution
to on-line encoding using a software-based parallel processing approach is to
partition a frame as it arrives among many processors [2]. All processors then
concurrently encode their parts of the frame data. The degree of parallelism
can be increased by making the problem granularity as small as allowed by
the frame size and the available number of processors.

This kind of parallel encoding, nevertheless, is still non-trivial from the per-
spective of parallel processing, as the computations in the processors are not
independent and the processors need to communicate with each other to ex-
change certain parameters. The encoding times are not the same for all data
partitions and hence global synchronization can incur waiting times at some
processors. In addition, the overhead of data-distribution and concatenation
of results can saturate the speedup if the number of processors is increased. In
[2], a similar approach is used. Although a real-time encoding rate is achieved
for the first time, it used 330 processors on the Intel Paragon, with the gran-
ularity of the problem (the amount of data per processor) being equal to a
macroblock.

The drawbacks of such an approach, in addition to using massive parallelism, is
that the speedup saturates as one macroblock is the smallest unit of data that
can be reasonably assigned to one processors. Decreasing the granularity be-
yond a macroblock (e.g. a simple block) would incur very heavy inter-processor
communication due to the motion estimation operation that needs to search
the data beyond the local block.

In the off-line approach, the data stream does not arrive from a live source,
rather an entire video sequence may be already available. Such an approach



is useful for production systems such as encoding a large video sequence into
a disk or CD-ROM. In this approach, one can partition the video data in the
temporal domain and let each processors independently encode a sequence of
frames, such as a GOP.

The pioneering work done for non-real-time environment has been reported in
[21] and [22]. In [21], GOP-level temporal parallelism has been used for MPEG-
1 using the Intel Touchstone Delta and the Intel Paragon. 1/O contention has
been found to be the major bottleneck, and an I/O management policy has
been used to restrict the number of PEs (processing elements) that involve
in I/O at the same time. Frame rates of over 41 frames per second for CIF
(352 x 288 pixels) sequence have been reported using 100 processors on the
Paragon or 144 processors on the Touchstone Delta. However, the performance
of the scheme starts degrading when more processors are used due to 1/0
contention. While the overall performance is faster than real-time, the entire
video needs to be available and statically partitioned in advance.

A subsequent study [22] has indicated that for the CCIR-601 (704 x 480 pixels)
sequence, the performance curve of the scheme goes down when more than
400 processors are used. It is mainly due to the large number of processors
reading from parallel file system (PFS) simultaneously. A novel scheme using a
combination of spatial and temporal parallelism has been proposed to reduce
the number of processors which are involved in the I/O at the same time. In
this scheme, the Paragon processors are evenly divided into groups of size m,
where one processor in each group is devoted for 1/O while other processors
are responsible for encoding and are considered as compute nodes. An 1/0
node reads in a video section (1 GOP) and sends it to compute nodes in the
group, each frame in the section is divided into slices which are processed by
the compute nodes in parallel. The compressed data is then sent back to the
I/O node on a frame by frame basis. An I/O node assembles the data and then
writes it to the PFS after it reads the next video section. A maximum frame
rate of 33 frames/sec. for CCIR-601 (704 x480 pixels) sequence is achieved with
a group size of 5 using 512 processors. Using this group size, 102 processors
are reserved as 1/0 nodes, that is, only 410 processors are encoding. A large
number (102 in the above case) of 1/0O nodes also cause I/O contention because
the actual number of disks used by the PFS is considerably smaller than that.

In addition to the above studies with notable results, there have been some
other previous attempts ([20], [23], [24]) to parallelize video encoders. In [20],
MPEG-1 is implemented on a set of Ethernet-connected workstations. Slice-,
frame-, and GOP-level parallelism has been exploited and compared. In their
implementation, one of the workstation is devoted as master workstation which
reads and distributes the video streams while the rest of the workstations do
encoding. GOP-level parallel implementation has been found to perform best
because of its low communication overhead in the Ethernet environment. A



frame rate of 7.8 frames/second has been reported using 18 workstations.

I/0O in parallel computer systems can be a bottleneck in a number of parallel
applications. Removal of the /O bottleneck requires an integrated approach
which addresses the problem at all levels of the system, including the storage
and parallel architecture [16]. In the context of video encoding, the objective
is to accomplish the optimal encoding rate, which can be achieved if all the
processors are kept busy (that is their waiting times are zero). This requires a
careful 1/0 strategy that is highly pipelined and always provides data when-
ever a processors finishes encoding of its previously assigned data. This, in
turn, requires a data layout scheme that can minimize all of the overhead and

yield the desired I/0O rate.

4 A Logical Partitioning of the Intel Paragon

The parallel machine we have used in our study is the Intel Paragon XP/S
parallel computer. The architecture of the Paragon, which is a distributed-
memory machine, has been documented well in various publications [12]. Here,
we describe some details of its architecture that are relevant to our work. We
also propose a logical partitioning of its processors that is the basis of our

scalable MPEG-2 video encoding scheme.

The Paragon consists of compute, I/O, and service partitions (see Figurel),
each with a certain number of processors. The nodes (processor/memory pairs)
are connected in a two-dimensional rectangular mesh, with each node con-
nected only to its nearest four neighbors in the mesh. Each compute node is
powered by an 1860 XP processor operating at 50MHz and has a peak floating
point performance of 75 Mflops double-precision or 100 Mflops single-precision.
Each node is equipped with 32 MB of DRAM where 24 MB is available to
user programs. In addition, each 1860 XP contains 16 KB of instruction cache
and 16 KB of data cache. The machine used in our experiments contains 128
compute nodes, 12 service nodes, and 7 disks. However, in order to meet the
requirements of 2-D mesh connection, we use 6 disks, 6 nodes for [/O and 120
nodes for encoding.

The file systems supported on the Intel Paragon are UNIX File System (UFS),
Network File System (NFS), and Parallel File System (PFS). The PFS consists
of multiple stripe directories where each directory is on a separate disk and
is a mount point of a separate UFS. Each disk is controlled by a dedicated
I/O node. Files stored in PFS are distributed or striped across all the stripe
directories. The number of stripe directories in a PFS is called the stripe factor,
and the amount of data from each file that is stored in each directory (disk)
is called stripe unit [12]. For instance, if the stripe unit size is 64kbytes, the
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Fig. 1. The architecture of the Intel Paragon and the partitioning of the com-
pute-processors into groups.

first 64kbytes of a file will be stored in the first UFS disk and the second 64k
in the next UFS disk and so on. Parallel data access is thus provided when
data are residing in multiple UFS disks. The product of the stripe factor and
stripe unit is called the full stripe size.

For our encoding scheme, we logically divide the processors of the Intel Paragon
into G groups, where the largest value of G is the total number of disks used
by the Paragon parallel file system (PFS). Each group has one disk and one
I/O processor which is responsible for reading the uncompressed data from
the disk and delivering it to the compute processors which are responsible for
encoding and writing the compressed data.

5 The Parallel Encoder

The objectives of our parallel encoder are:

— To achieve the maximum possible encoding rate, given any machine config-
uration (that is, the number of processors, 1/0 nodes, and disks).

— To achieve a complete scalability, in that, the encoding rate should increase
linearly with an increase number of processors without reaching a saturation
point in performance.
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Fig. 2. MPEG-2 parallel encoder.

The objectives can be met if all of the processors are kept busy in reading
the data, performing the encoding, and writing the coded bit stream. In other
words, the processor waiting times are minimized and thus the encoding rate
is the maximum possible. The proposed scheme achieves these objectives by
scheduling the disks, I/O nodes, and the processors. The scalability issue of
the proposed scheme is discussed in Section 7. An extra plus point of our
parallel encoder is that the number of processors dedicated for the 1/0 is very
small (about 5%) compared to that (about 25%) in one of the previous studies
[22].

In this work, the entire system including the computing nodes, I/O nodes, and
disks should work in a highly balanced fashion, and their operations should
overlap with each other. As illustrated in Figure2, our encoding system can
be viewed as a collection of producers (disks)?, distributors (I/O nodes), and
consumers (compute nodes). The goal is to sustain an uninterrupted supply
of the product (data) needed by the consumers so that they do not starve.
The consumer demand requires matching of the distribution rates with the
consumption rate. The entire population of consumers is divided into groups
and one distributor is assigned to each group. At the same time, the number of
distributors should be kept the minimum. Furthermore, the producers should

3One can assume that an external source is providing the data for the disks. Then
the disks can be assumed to be buffers for the external source, which can be filled
when the distributors are busy distributing the previous data to the consumers. In
our scheme, this buffer size does not require the entire video and is very small.
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keep up with the distribution and consumption rates.

In the proposed scheme, an efficient load-balanced scheme for distributing the
data from the I/O nodes to the compute nodes is described. Whenever a com-
pute processor finish encoding, it demands data from the 1/0O processor which
is ready to provide the required data for the next round. To maintain such
an 1/0 with little overhead, a data layout scheme on the disk is designed, as
explained below. The notations and symbols used in the subsequent discussion
are included in Table 1.

9.1 Data layout

The main issue is how to divide a video sequence into a set of files and to
spread those files on the disks to reduce the 1/0O contention and file opening
overhead. There are three simple ways of dividing a video. First, to store
the entire sequence in one file. Second, to store each frame (including one
luminance and two chrominance components) in one file. Third, to store the
luminance and the two chrominance components of a video frame in three
separate files. The first option is obviously impractical because of the large
space requirement and is inefficient because of the potential contention. The
second and the third options incur a substantial overhead for opening a large
number of files. The division of the video sequence in our work is a trade-off
strategy and is elaborated below.

Uncompressed frames of the video sequence are distributed to different disks
on a GOP basis, that is, the video sequence is first divided into several GOPs
which are then divided among the disks as evenly as possible. Without loss of
generality we can assume that the total number of GOPs () is divisible by
the number of disks (D). Each disk stores an array of GOPs. The size of the
array can be a multiple of m (the group size). Further, within a group, each
compute node is assigned at least one GOP, containing g frames (12 frames
in our case).

An 1/0 node goes through a disk read phase in which it reads the data for
all the compute nodes in the group, followed by a sending phase in which it
sends the data read in the disk read phase. The combination of the two phases
is considered as a round. The frames required for one compute node in one
round are called a balch; a batch may contain k& frames, where & € 1,...,g.
All the batches which are required in one round for all the compute nodes in
a group are combined in one file (we will call it a vector in the subsequent
discussion). This clustering of frames is done to avoid the overhead of opening
a large number of files. There are L layers of GOPs in a disk, each of which
contains R vectors (see Figure3).

11



Table 1

Notations and parameters

Symbol | Meaning
N Total number of nodes
D Number of disks = Number of 1/O nodes
m Number of compute nodes in a group = (N — D)/D
M Total available memory in one 1/O node
B Number of frames in a batch
R Total number of rounds
n Number of total frames in a video
g Number of frames in a group of picture (GOP)
G Total number of GOPs in the video sequence = n/g
L Number of layers in a disk
F Size of one frame in bytes
b Size of buffer to contain one batch = FF' x B
Topen Time to open a file
tread Time to read one frame
Tread Time to read one batch
T, Time to read one vector
tene Average time to encode one frame
Tore Time to encode one batch (average over all compute nodes)
twrite Time to write one frame to PFS
tsend Time to send one frame to a compute node
Tsend Time to send a batch to a compute node
trecw Time to receive one frame by a compute node
T¢(3) | Minimum finish time of compute nodes in j* round
T Encoding time of the batch received in i** round by the k** compute node
Tw(j) | Waiting time for an 1/O node for the j** round
r Data transfer rate from the disks to /O node
f Frame encoding rate

12
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Fig. 3. An example of data layout on a disk for distribution among compute nodes

by one 1/0 node.

If the size of the array of GOPs in one disk is a multiple of m, then the vector
containing the batches is as follows: v : < k, &k >, for k =0,1,...,m — 1 where
< 1,7 > represents that batch ¢ in the vector that will be sent to processor j
in the group and m is the group size. The same vector will be used in all the
rounds.

Consider an example with the total number of frames equal to 48. We divide
it into 4 GOPs and assume that there is only one group of 4 compute nodes.
Each compute node will be assigned one GOP, and if a batch of 1 frame is
used, there will be only one type of vector having 4 frames. Therefore, the
I/O node will read and send 4 frames in a round, and there will be 12 such
rounds. On the other hand if a batch of 3 frames is used, the vector will have
12 frames. In this case, the /O node will read and send 12 frames in a round,
and there will be 4 such rounds. The time required to read a vector v can be
computed as:

Tv - Topen + m X Tread7 (1)

where T, is the average time to open a file, which is the time needed to read
the file and the disk addresses of the data blocks from the disk, 7}..4 is the

average time to read one batch of frames.

However, when the size of the array of GOPs in one disk is not a multiple
of m, there will be one layer (e.g. layer 3 in Figure3) with number of GOPs
less than m. Since one compute node must encode at least one GOP, if there

13



is [ GOPs in the a layer (I < m), we must use [ compute nodes for that
layer. Consequently, the vectors for that layer will be: v :< k, mod(k,[) > for
k=0,1,...,m—1, where < 17,7 > represents that batch 7 in the vector will be
sent to processor j in the group of [ compute nodes, and there are m batches
in a vector. The time to read a vector v is the same as expressed in Equation

(1)

5.2 The data distribution scheme

Our data distribution uses a dynamic approach. The 1/O node of a group
reads a vector from the associated disk and sends one batch of frames to each
compute node in the group. While the compute nodes are encoding, the 1/0
node reads the next vector from the disk and waits. As soon as a compute
node finishes the encoding of its earlier batch it sends a request message for
the next batch. After receiving the request, the I/O node sends the next batch
to the requester. After serving all the requests, the 1/0O node reads the next
vector and waits for the requests. The compute nodes save the compressed
data into a buffer, and write it to the PFS when it is full. The size of the
buffer is set to be a multiple of the full stripe size of the PFS to optimize the
writing. All of the disks in the PFS are used for writing as compared to one

disk used by an I/0 node for reading.

The overhead of writing the compressed data is very small as compared to
reading the uncompressed data, therefore, no scheduling is employed for writ-
ing the compressed data. The operation of this scheme is shown in Figure4
with three compute nodes in a group.

5.2.1 Buffer size alt 1/0 nodes

Uncompressed data is read into the RAM buffers from the magnetic disk for all
the compute nodes in a group and then sent to compute nodes (see Figure2).
Two most important parameters are disk reading time per frame and average
encoding time of the frames on compute node. Sending or receiving time for a
frame is not significant as compared to reading and encoding times, therefore
we will not consider them in the following discussion. The disks used in the
Paragon are Maxtor 120 and their characteristics are given in Table 2. Since
the average access time is average seek time + average rotational delay +
transfer time + controller overhead, and disk reading overhead for Paragon
PFS is per 64k block basis, reading more 64k blocks at one time will result
in less overhead per frame. Disk reading time per frame using batch sizes of
1, 3 and 6 frames is shown in Table 3. The numbers within parenthesis in
third column represent the actual number of 64k block being used. It may be

14
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Table 2
Paragon disk (Maxtor) characteristics.
Transfer rate 3-4 MB/sec
Rotation speed 3200-3600 rpm
Average seek time 16-18 msec
Table 3
Observed frame reading times for SIF' (352 x 240) flower garden sequence.
Batch size | Batch size | No. of 64K | Access time | Transfer time | reading time/
(frames) (bytes) blocks (msec.) (msec.) frame (msec.)
1 126720 1.93 (2) 63 30 66.0
3 380160 5.80 (6) 168 90 56.0
6 760320 11.60 (12) 300 180 50.0

noticed from column 4 that the disk reading overhead (access time) does not

increase linearly with increase in the number of blocks in a batch.

The ideal situation is to have the serving rate (disk reading and sending)
of the 1/O node equal to the encoding rate of the compute nodes, so that
neither the 1/O node nor the compute nodes are idle at any time. The optimal

buffer size for an appropriate group size (m) is the one that balances the
disk reading rate with the encoding rate. The memory requirement for the m
RAM buffers should be less than or equal to the total available memory M,
ie., m x F'x B <M where Fis the frame size (no. of bytes in a frame) and

B is the number of frames sent to a compute node in one round.
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Therefore, the maximum batch size (in bytes) will be,

7

Bmaz‘:\‘
m x F

and consequently, the buffer size b will be, b,,,, = F X B,z.

This buffer size can be used for all the rounds if the following equation is
satisfied:

Topen +m X B x (tread + tsend) S Tf(]) (2)

where T(j) is the minimum finish time of the j* round among all compute
nodes in the group and is given by:

Tf(]) =B x (trecv + tu}rite) + HlkinTk,i, k=1,...,m, (3)

where Ty ; is the encoding time for :'* batch by the k™" compute node. Equation
(2) requires that the serving time for one round on the I/O node should be
less than or equal to the encoding time of all compute nodes in the group.
This requirement guarantees no waiting time on the compute nodes. A larger
batch size (constrained by the memory size) is better so as to utilize the 1/0
node more efficiently and to reduce the communication overhead.

5.2.2  Waiting time of an 1/0 node

Disregarding the negligible values of Tsend and Trecv, we can determine the
waiting time T,,(j) for an 1/0 node in the 5 round as follows:

j—1

J
T.(j) = m]?X;TkJ- — m]?X;TM —m X Tread — Topen, kK =1,...,m, (4)

and the total waiting time of an 1/O node during R round is:

R R
Tu(j) = m}fmx{z Thik=1,.. .,m} — Rxm X Treqqa — R X Topen-(5)

=1

71=1

One can determine from the experimental data the expected value of the total
encoding time of each compute node in a group (served by an I/O node) i.e.
) {2?21 Tw(])} in order to minimize the total waiting time of that I/O node.
Since the 1/O nodes are assumed to be identical, this approach will guarantee
the optimal utilization of resources for any given number of compute nodes,

I/O nodes and disks.
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5.3 Ideal frame rate

The ideal frame rate is defined as the maximum number of frames the encoder
can encode in one second without any waiting times on compute nodes, given
some numbers of processors and disks. As compared to the sequential encoder,
the utilization of compute nodes in the parallel encoder is 100

f=(N=D)/tenc, (6)

where N is the total number of processors used and D is the number of disks
or the processors reserved as the 1/0 nodes, {.,. is the average encoding time
per frame. But as parallel implementation introduces some other overheads
into the encoding time, the encoding overhead per frame will be:

To - trecv + twrite;

where t,.., 1s the average receiving time per frame and ¢, 1s the average
writing time of the encoded bitstream to the disk for one frame. Therefore,
the equation for ideal frame rate becomes:

(N - D)

f B (trecv + tenc + twrite) .

(7)

The average writing time per frame (¢,,..) is difficult to estimate, because it
varies depending upon the number of processors writing to the PFS at the
same time. The average across all the compute nodes will be used as ., to
estimate the ideal frame rate.

6 Experimental Results

The SIF (360 x 240) video sequences flower garden, table tennis and football
were used as test sequences. Two CCIR-601 (720 x 480) sequences susie and
football were also used for our experiments. The sequences were repeated to
obtain about 4000 frames for SIF and 3000 frames for CCIR-601. The size of
the GOP was 12 frames with I-P frame distance of 3. For motion estimation,
the 2D-logarithmic search with the search windows of £11 for P frames and
+10 for B frames were used. The sequential encoder used was the one from
MPEG Software Simulation Group [18]. The encoder was compiled using the
C compiler on the Paragon with all the optimizations enabled.

Table 4 include the results for the SIF football sequence. The first column
shows the total number of processors while the second column is the number
of compute nodes in one group. The obtained frame rates for buffer sizes of
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Table 4
Encoding rates for SIF (360 x 240) football sequence.

No. of Group b=Fx1 b=Fx3
Processors | Size | Frames/ | Avg. idle time | Frames/ | Avg. idle time
sec. (msec.) sec. (msec.)
48 7 25.28 27.78 25.50 5.01
60 9 32.21 68.39 32.60 4.24
72 11 38.81 76.97 39.51 5.40
84 13 45.41 102.44 46.23 5.82
96 15 52.38 90.43 52.70 6.28
114 18 61.38 158.11 62.25 7.35
126 20 66.68 157.15 69.38 8.50

1 and 3 frames are given in columns 3 and 5, respectively. The average idle
times on compute nodes are given in columns 4 and 6. The achieved frame
rate is calculated by dividing the number of total frames by the encoder finish
time; the encoder finish time includes the 1/0 time, communication time, idle
(waiting) time, and the encoding time. The idle time is the time period during
which a compute node waits for data from an I/0O node.

From Table 4, the buffer size of 3 frames gives better performance, this is due
to less communication and waiting overhead as compared to the buffer size
of 1 frame. For the buffer size of 3 frames, the compute nodes need to send
requests and wait for data for 4 times per GOP (as compared to 12 times for
buffer size of 1) which results in less overall waiting time. Figureb and Figure6
include plots of the frame rates for the scheme as well as the ideal frame rate
(computed using Equation (7)) using the buffer size of 1 and 3 frames. The
waiting times for buffer size of 3 frames are negligible as compared to those
with 1 frame.

Table 5 and Table 6 give the results for the other two SIF sequences where
the disk writing times are also shown; buffer size of 3 frames is used for these
sequences. The maximum frame rate of 71 frames per second is achieved for
flower garden sequence using 126 processors while reserving 6 processors as

I/0 nodes, that is, using all of the 6 PFS disks.

The frame rates for the CCIR-601 sequences football and susie are given in
Figure7 and Table 7 respectively. The results for CCIR-601 sequences are
obtained using buffer size of 1 frame. Buffer size of 3 frames could not be used
for larger group sizes because of the limited available memory of an 1/0 node.
For example, the memory required for a group size of 20 is more than 40MB
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Fig. 5. The frame rate for SIF sequence football for b = I’ x 1.

while the memory available to a user program on a Paragon node is about 25

MB.

Comparing the obtained results for our scheme with those of the schemes
proposed in [22], the performance of our scheme is considerably higher. This is
an approximate comparison, as [22] has used a frame size of 506880 bytes while
in our experiments an even larger frame size of 691200 bytes (resulting from a
frame size of 720 x 480 pixels with 4:2:2 chroma format) is used. Furthermore,
our work is based on MPEG-2 while that of [22] is based on MPEG-1. For 125
Paragon processors, the frame rate reported in [22] is 8 frames/sec., while we
achieved a frame rate of about 13 frames/sec. (which should be 17 frames/sec.
if we normalize the two frame sizes) using 126 processors. Thus, our scheme
yields a two fold increase in encoding rate.

7 Scalability of the Scheme

First, we will determine the largest possible group size or how many compute
nodes can be supported by a single disk without any significant waiting time
on compute nodes. Assuming the buffer size b to be equal to the size of 3
frames, Equation (2) can be written in terms of reading and encoding times
as:

Topen +m X (Tread + Tsend) S Tenc + Trecv- (8)

where T}.oq, Tsends Treey and T, are the times to read, send, receive and encode
the data of size b bytes, respectively. The overhead of receiving the request
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Frame rate for SIF sequence football with b =3 x F
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Fig. 6. The frame rate for SIF sequence football for b = I’ x 3.

Frame rate for CCIR601 sequence football
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Fig. 7. The frame rate for CCIR-601 sequence football.

messages from compute nodes is assumed to be negligible and not taken into
account in the above equation. The values of T,.,4 and T.,. are independent
of the group size. Experimental results show that the values of T.,4 and T,..,
do not vary significantly (for group sizes of 7 to 20), therefore the maximum
group size My,,, can be estimated from the above equation as:

m . Tenc —I' Trecv - Topen
maxr — .
Tread + Tsend

(9)

If we keep the group size less than or equal to m,, .., the specified constraint in
Equation (2) will be preserved. Note that, by definition, m = (N — D)/ D, =
D = [N/(m +1)], where D is the number of disks to use. If we use D disks
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Table 5
Encoding rates for SIF (352 x 240) flower garden sequence.

No. of Group b=Fx3
Processors | Size | Frames/sec. | Avg. Idle time | Avg. Writing time

(msec.) (msec.)

48 7 26.49 8.81 729.33

60 9 33.48 12.08 827.48

72 11 40.93 14.99 717.81

84 13 48.37 15.10 991.23

96 15 55.82 44 .58 980.42

114 18 64.76 103.63 1707.96

126 20 71.96 326.17 2056.83

Table 6
Encoding rates for SIF (352 x 240) table tennis sequence.
No. of Group b=Fx3
Processors | Size | Frames/sec. | Avg. Idle time | Avg. Writing time

(msec.) (msec.)

48 7 26.51 4.43 161.13

60 9 33.52 4.21 525.54

72 11 40.98 5.47 378.54

84 13 48.04 5.29 867.72

96 15 54.99 5.37 801.98

114 18 65.35 6.35 1458.02

126 20 69.60 6.63 2454.08

subject to m,,q., the degree of parallelism will be maximum, and the ideal
frame rate can be determined theoretically.

On the other hand, with an increase of available number of disks, one I/0O node
needs to serve less number of compute nodes in a group, thereby reducing the
disk access time, data reading time and communication time. In that case,
waiting time would be introduced in the I/O node. Therefore, the frame rate
would be determined by the minimum finish time of compute nodes (which
would be larger than the serving time of 1/0O node).

In order to determine the ideal frame rate beyond 126 nodes (the number
of nodes we have used for experiments), we note that from Equation (6),
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Table 7
Encoding rates for CCIR-601 (720 x 480) susie sequence.

No. of Group b=Fx1
Processors Size Frames/sec. | Avg. Idle time | Avg. Writing time
(msec.) (msec.)
48 7 4.47 18.28 62.43
60 9 5.75 28.71 72.26
72 11 7.00 27.55 156.32
84 13 8.31 40.76 121.68
96 15 9.59 57.57 161.47
114 18 11.46 81.11 275.51
126 20 12.73 363.33 464.20
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Fig. 8. Scalability for the SII sequence football, no degradation of degree of paral-
lelism.

tene = (N — D)/ f. Therefore Equation (9) can be rewritten as:

_ B X tenc —I' Trecv - Topen
B Tread + Tsend
Bx(N—-D
i (N - D) |
m X (Tread + Tsend) + Topen - Trecv

(10)

m

(11)

In Figure8 and Figurel0, frame rates are plotted against the number of pro-
cessors using different number of disks. In Figure8, we consider the case of
SIF sequence football for 512 nodes with m = 28 and m = 20, which gives
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Fig. 9. Scalability for the SIF sequence football, degree of parallelism degraded.
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Fig. 10. Scalability for the CCIR-601 sequence football, no degradation of degree of
parallelism.

D = 18, and D = 24, respectively. As long as D disks are available, it can
be seen from Figure8 that the frame rate increases linearly with an increase
in the number of processors. If the number of disks used is larger than D,
assuming no degradation of degree of parallelism (that is, serving time of I/O
node is equal to the minimum finish time of compute nodes), the scalability
of the scheme can likewise be observed from Figure8. Similar observation can
be made from FigurelO which depicts the case of CCIR-601 sequence football.
Figure9 and Figurell depict the scalability, if the above assumption does not
hold, and the minimum finish time of compute nodes is larger than the serving

time of 1/O node.
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Fig. 11. Scalability for the CCIR-601 sequence football, degree of parallelism de-
graded.

However, if D disks are not available, an inevitable waiting time will be intro-
duced in the compute nodes. Waiting time in the compute node is determined
as:

Tu}ait - Topen +m X (Tread + Tsend) - (Tenc + Trecu)- (12)

In that case,

B x (N - D)
Topen - Trecv + Twait +m X (Tread + Tsend) ‘

/= (13)

Therefore, the scheme scales gracefully to any number of processors as long
as the required disks are available and the communication network provides
enough bandwidth for the communication of all the I/O nodes with the com-
pute nodes in their groups.

Example 1. Let us consider an example for the SIF (360 x 240) sequence
football. Using the buffer size b equal to the size of 3 frames, we experimentally
determine T,,., = 0.101 sec., T,.qq = 0.16 sec., Tsepng = 0.0048 sec., Tyeepy =
0.0048 sec., and T.,. = 4.77 sec. Therefore, from Equation (9), the maximum
group size My,q, 18 28.

Example 2. Let us consider another example for the CCIR-601 sequence
football. Using the buffer size b equal to the size of 1 frame, we experimentally
determine T,,., = 0.101 sec., T,.qq = 0.226 sec., Tseng = 0.056 sec., Tyeepy =
0.056 sec., and T.,. = 9.20 sec. Therefore, from Equation (9), the maximum
group size Myq, 18 32.
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Example 3. Given a total number of 512 nodes, we can find the minimum
number of disks required. Consider the sequence in Example 1. For m,,,, =
28, we determine D = 18. Similarly, in case of example 2. for m,,., = 32, the

calculated D = 16.

8 Conclusions

We have proposed a parallel MPEG-2 encoder that has been implemented on
the Intel Paragon. The proposed scheme partitions the system into groups of
compute nodes, and I/0O nodes, and can be easily extended to other MIMD
machines or a set of networked workstations. The proposed encoder optimizes
the system performance by balancing the computation, 1/O, and the disk
usage. The proposed encoder has achieved the highest level of performance
reported for such a problem, with a frame rate of 71 frames per second for SIF
(352 x 240 pixel) sequence using 126 Paragon processors. Using the CCIR-601
sequence, we have achieved about two times better performance compared
to a previous study with the best results. The performance of the proposed
scheme scales with the number of processors.
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